Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Infect Control Hosp Epidemiol ; : 1-4, 2021 Dec 06.
Article in English | MEDLINE | ID: covidwho-2323989

ABSTRACT

To assess the burden of respiratory virus coinfections with severe acute respiratory coronavirus virus 2 (SARS-CoV-2), this study reviewed 4,818 specimens positive for SARS-CoV-2 and tested using respiratory virus multiplex testing. Coinfections with SARS-CoV-2 were uncommon (2.8%), with enterovirus or rhinovirus as the most prevalent target (88.1%). Respiratory virus coinfection with SARS-CoV-2 remains low 1 year into the coronavirus disease 2019 (COVID-19) pandemic.

2.
ACS ES T Water ; 2(11): 2243-2254, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2115772

ABSTRACT

The correlations between SARS-CoV-2 RNA levels in wastewater from 12 wastewater treatment plants and new COVID-19 cases in the corresponding sewersheds of 10 communities were studied over 17 months. The analysis from the longest continuous surveillance reported to date revealed that SARS-CoV-2 RNA levels correlated well with temporal changes of COVID-19 cases in each community. The strongest correlation was found during the third wave (r = 0.97) based on the population-weighted SARS-CoV-2 RNA levels in wastewater. Different correlations were observed (r from 0.51 to 0.86) in various sizes of communities. The population in the sewershed had no observed effects on the strength of the correlation. Fluctuation of SARS-CoV-2 RNA levels in wastewater mirrored increases and decreases of COVID-19 cases in the corresponding community. Since the viral shedding to sewers from all infected individuals is included, wastewater-based surveillance provides an unbiased and no-discriminate estimation of the prevalence of COVID-19 compared with clinical testing that was subject to testing-seeking behaviors and policy changes. Wastewater-based surveillance on SARS-CoV-2 represents a temporal trend of COVID-19 disease burden and is an effective and supplementary monitoring when the number of COVID-19 cases reaches detectable thresholds of SARS-CoV-2 RNA in wastewater of treatment facilities serving various sizes of populations.

3.
ACS ES&T water ; 2022.
Article in English | EuropePMC | ID: covidwho-2046390

ABSTRACT

The correlations between SARS-CoV-2 RNA levels in wastewater from 12 wastewater treatment plants and new COVID-19 cases in the corresponding sewersheds of 10 communities were studied over 17 months. The analysis from the longest continuous surveillance reported to date revealed that SARS-CoV-2 RNA levels correlated well with temporal changes of COVID-19 cases in each community. The strongest correlation was found during the third wave (r = 0.97) based on the population-weighted SARS-CoV-2 RNA levels in wastewater. Different correlations were observed (r from 0.51 to 0.86) in various sizes of communities. The population in the sewershed had no observed effects on the strength of the correlation. Fluctuation of SARS-CoV-2 RNA levels in wastewater mirrored increases and decreases of COVID-19 cases in the corresponding community. Since the viral shedding to sewers from all infected individuals is included, wastewater-based surveillance provides an unbiased and no-discriminate estimation of the prevalence of COVID-19 compared with clinical testing that was subject to testing–seeking behaviors and policy changes. Wastewater-based surveillance on SARS-CoV-2 represents a temporal trend of COVID-19 disease burden and is an effective and supplementary monitoring when the number of COVID-19 cases reaches detectable thresholds of SARS-CoV-2 RNA in wastewater of treatment facilities serving various sizes of populations. Fluctuation of SARS-CoV-2 RNA levels in wastewater reflects temporal trends of new COVID-19 cases in the community correspondingly.

4.
J Environ Sci (China) ; 125: 843-850, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-1819537

ABSTRACT

With a unique and large size of testing results of 1,842 samples collected from 12 wastewater treatment plants (WWTP) for 14 months through from low to high prevalence of COVID-19, the sensitivity of RT-qPCR detection of SARS-CoV-2 RNA in wastewater that correspond to the communities was computed by using Probit analysis. This study determined the number of new COVID-19 cases per 100,000 population required to detect SARS-CoV-2 RNA in wastewater at defined probabilities and provided an evidence-based framework of wastewater-based epidemiology surveillance (WBE). Input data were positive and negative test results of SARS-CoV-2 RNA in wastewater samples and the corresponding new COVID-19 case rates per 100,000 population served by each WWTP. The analyses determined that RT-qPCR-based SARS-CoV-2 RNA detection threshold at 50%, 80% and 99% probability required a median of 8 (range: 4-19), 18 (9-43), and 38 (17-97) of new COVID-19 cases /100,000, respectively. Namely, the positive detection rate at 50%, 80% and 99% probability were 0.01%, 0.02%, and 0.04% averagely for new cases in the population. This study improves understanding of the performance of WBE SARS-CoV-2 RNA detection using the large datasets and prolonged study period. Estimated COVID-19 burden at a community level that would result in a positive detection of SARS-CoV-2 in wastewater is critical to support WBE application as a supplementary warning/monitoring system for COVID-19 prevention and control.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Wastewater/analysis , RNA, Viral/genetics , RNA, Viral/analysis , Alberta/epidemiology
5.
Sci Total Environ ; 812: 151434, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1500243

ABSTRACT

Wastewater surveillance of SARS-CoV-2 has become a promising tool to estimate population-level changes in community infections and the prevalence of COVID-19 disease. Although many studies have reported the detection and quantification of SARS-CoV-2 in wastewater, remarkable variation remains in the methodology. In this study, we validated a molecular testing method by concentrating viruses from wastewater using ultrafiltration and detecting SARS-CoV-2 using one-step RT-qPCR assay. The following parameters were optimized including sample storage condition, wastewater pH, RNA extraction and RT-qPCR assay by quantification of SARS-CoV-2 or spiked human coronavirus strain 229E (hCoV-229E). Wastewater samples stored at 4 °C after collection showed significantly enhanced detection of SARS-CoV-2 with approximately 2-3 PCR-cycle threshold (Ct) values less when compared to samples stored at -20 °C. Pre-adjustment of the wastewater pH to 9.6 to aid virus desorption followed by pH readjustment to neutral after solid removal significantly increased the recovery of spiked hCoV-229E. Of the five commercially available RNA isolation kits evaluated, the MagMAX-96 viral RNA isolation kit showed the best recovery of hCoV-229E (50.1 ± 20.1%). Compared with two-step RT-qPCR, one-step RT-qPCR improved sensitivity for SARS-CoV-2 detection. Salmon DNA was included for monitoring PCR inhibition and pepper mild mottle virus (PMMoV), a fecal indicator indigenous to wastewater, was used to normalize SARS-CoV-2 levels in wastewater. Our method for molecular detection of SARS-CoV-2 in wastewater provides a useful tool for public health surveillance of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral , Wastewater , Wastewater-Based Epidemiological Monitoring
6.
J Assoc Med Microbiol Infect Dis Can ; 6(1): 10-15, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1234646

ABSTRACT

Background: The first case of coronavirus disease 2019 (COVID-19) in Alberta, Canada, was confirmed on March 5, 2020. Because the virus testing criteria had changed significantly over this time period, we wanted to ascertain whether previous cases of COVID-19 had been missed in the province. Methods: Our aim was to retrospectively evaluate specimens submitted for respiratory virus testing from December 1, 2019, through March 7, 2020, for undetected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections before the first confirmed case. Results: Testing of 23,517 samples (representing 23,394 patients) identified 1 patient positive for SARS-CoV-2. This specimen was collected on February 24, 2020, from a patient with symptoms consistent with COVID-19 who had recently returned from the western United States. Phylogenetic analysis confirmed this viral isolate belonged to lineage B.1. The epidemiology of this case is consistent with those of other early cases before sustained community transmission, which included a travel history outside of Canada. Conclusion: This exercise provides support that local public health pandemic planning was satisfactory and timely.


Historique: Le premier cas de maladie à coronavirus 2019 (COVID-19) en Alberta, au Canada, a été confirmé le 15 mars 2020. Puisque les critères de dépistage ont beaucoup évolué pendant cette période, les chercheurs voulaient vérifier si des cas antérieurs de COVID-19 avaient été omis dans la province. Méthodologie: Les chercheurs ont procédé à l'évaluation rétrospective d'échantillons soumis en vue du dépistage d'un virus respiratoire entre le 1er décembre 2019 et le 7 mars 2020, afin de retracer les infections par le coronavirus 2 du syndrome respiratoire aigu sévère (SARS-CoV-2) non décelées avant le premier cas confirmé. Résultats: Le dépistage de 23 517 échantillons (représentant 23 394 patients) a fait ressortir un patient positif au SARS-CoV-2. Le prélèvement avait été effectué le 24 février 2020 chez un patient éprouvant des symptômes correspondant à la COVID-19 revenu récemment de l'ouest des États-Unis. L'analyse phylogénétique a confirmé que l'isolat viral appartenait à la lignée B.1. L'épidémiologie de ce cas est compatible avec celle des autres premiers cas précédant une transmission communautaire soutenue, qui incluait un voyage à l'extérieur du Canada. Conclusion: Cet exercice appuie la pertinence et la rapidité de la planification sanitaire locale de la pandémie.

7.
Virol J ; 18(1): 93, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1208555

ABSTRACT

BACKGROUND: SARS-CoV-2 infection can present with a broad clinical differential that includes many other respiratory viruses; therefore, accurate tests are crucial to distinguish true COVID-19 cases from pathogens that do not require urgent public health interventions. Co-circulation of other respiratory viruses is largely unknown during the COVID-19 pandemic but would inform strategies to rapidly and accurately test patients with respiratory symptoms. METHODS: This study retrospectively examined 298,415 respiratory specimens collected from symptomatic patients for SARS-CoV-2 testing in the three months since COVID-19 was initially documented in the province of Alberta, Canada (March-May, 2020). By focusing on 52,285 specimens that were also tested with the Luminex Respiratory Pathogen Panel for 17 other pathogens, this study examines the prevalence of 18 potentially co-circulating pathogens and their relative rates in prior years versus since COVID-19 emerged, including four endemic coronaviruses. RESULTS: SARS-CoV-2 was identified in 2.2% of all specimens. Parallel broad multiplex testing detected additional pathogens in only 3.4% of these SARS-CoV-2-positive specimens: significantly less than in SARS-CoV-2-negative specimens (p < 0.0001), suggesting very low rates of SARS-CoV-2 co-infection. Furthermore, the overall co-infection rate was significantly lower among specimens with SARS-CoV-2 detected (p < 0.0001). Finally, less than 0.005% of all specimens tested positive for both SARS-CoV-2 and any of the four endemic coronaviruses tested, strongly suggesting neither co-infection nor cross-reactivity between these coronaviruses. CONCLUSIONS: Broad respiratory pathogen testing rarely detected additional pathogens in SARS-CoV-2-positive specimens. While helpful to understand co-circulation of respiratory viruses causing similar symptoms as COVID-19, ultimately these broad tests were resource-intensive and inflexible in a time when clinical laboratories face unprecedented demand for respiratory virus testing, with further increases expected during influenza season. A transition from broad, multiplex tests toward streamlined diagnostic algorithms targeting respiratory pathogens of public health concern could simultaneously reduce the overall burden on clinical laboratories while prioritizing testing of pathogens of public health importance. This is particularly valuable with ongoing strains on testing resources, exacerbated during influenza seasons.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Coinfection/epidemiology , SARS-CoV-2/isolation & purification , Alberta/epidemiology , Canada/epidemiology , Coronavirus/isolation & purification , Coronavirus 229E, Human/isolation & purification , Coronavirus NL63, Human/isolation & purification , Coronavirus OC43, Human/isolation & purification , Cross Reactions , Female , Humans , Male , Orthomyxoviridae/isolation & purification , Pandemics , Prevalence , Retrospective Studies
8.
Virol J ; 18(1): 13, 2021 01 09.
Article in English | MEDLINE | ID: covidwho-1067245

ABSTRACT

BACKGROUND: COVID-19 is diagnosed via detection of SARS-CoV-2 RNA using real time reverse-transcriptase polymerase chain reaction (rtRT-PCR). Performance of many SARS-CoV-2 rtRT-PCR assays is not entirely known due to the lack of a gold standard. We sought to evaluate the false negative rate (FNR) and sensitivity of our laboratory-developed SARS-CoV-2 rtRT-PCR targeting the envelope (E) and RNA-dependent RNA-polymerase (RdRp) genes. METHODS: SARS-CoV-2 rtRT-PCR results at the Public Health Laboratory (Alberta, Canada) from January 21 to April 18, 2020 were reviewed to identify patients with an initial negative rtRT-PCR followed by a positive result on repeat testing within 14 days (defined as discordant results). Negative samples from these discordant specimens were re-tested using three alternate rtRT-PCR assays (targeting the E gene and N1/N2 regions of the nucleocapsid genes) to assess for false negative (FN) results. RESULTS: During the time period specified, 95,919 patients (100,001 samples) were tested for SARS-CoV-2. Of these, 49 patients were found to have discordant results including 49 positive and 52 negative swabs. Repeat testing of 52 negative swabs found five FNs (from five separate patients). Assuming 100% specificity of the diagnostic assay, the FNR and sensitivity in this group of patients with discordant testing was 9.3% (95% CI 1.5-17.0%) and 90.7% (95% CI 82.6-98.9%) respectively. CONCLUSIONS: Studies to understand the FNR of routinely used assays are important to confirm adequate clinical performance. In this study, most FN results were due to low amounts of SARS-CoV-2 virus concentrations in patients with multiple specimens collected during different stages of infection. Post-test clinical evaluation of each patient is advised to ensure that rtRT-PCR results are not the only factor in excluding COVID-19.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Real-Time Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Adult , Aged , Aged, 80 and over , COVID-19/virology , COVID-19 Nucleic Acid Testing/statistics & numerical data , Canada , False Negative Reactions , Female , Humans , Male , Middle Aged , Molecular Diagnostic Techniques/statistics & numerical data , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL